Targeting protein geranylgeranylation slows tumor development in a murine model of prostate cancer metastasis

نویسندگان

  • Jacqueline E. Reilly
  • Jeffrey D. Neighbors
  • Raymond J. Hohl
چکیده

The isoprenoid biosynthetic pathway (IBP) plays a critical role in providing substrates and enzymes necessary for the post-translational modification and thus activation of a number of proteins involved in prostate cancer metastasis. Previous work by our lab found novel compound disodium [(6Z,11E,15E)-9-[bis(sodiooxy)phosphoryl]-17-hydroxy-2,6,12,16-tetramethyheptadeca-2,6,11,15-tetraen-9-yl]phosphonate (GGOHBP), which inhibits the IBP enzyme geranylgeranyl diphosphate synthase (GGDPS), reduced protein geranylgeranylation without altering protein farnesylation. This activity significantly reduced adrenal gland tumor burden in a murine model of human prostate cancer metastasis which relied on treatment of established disease. The present study determined the ability of GGDPS inhibition to slow the development of prostate cancer metastasis in a preventative murine model. Using tail vein injection of human derived PC-3 prostate cancer cells 4 d after initiating daily GGOHBP or vehicle treatments, we found GGOHBP significantly reduced whole body tumor burden, significantly slowed the development of tumors, and prolonged overall survival as compared to vehicle treated animals. The observed reduction in soft tissue tumor burden corresponded to a biochemical reduction in Rap1A geranylgeranylation, which for prostate cancer is important in its own merit and which serves as a surrogate marker for Rho family, i.e. Rac, protein modification. This effect was present in all treated mice pointing to strong target engagement, which was not observed in non-tumor burdened tissues or control mice. Our findings reiterate a role for protein geranylgeranylation in the development of prostate cancer metastasis in vivo.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Role of Tumor Protein 53 Mutations in Common Human Cancers and Targeting the Murine Double Minute 2–P53 Interaction for Cancer Therapy

The gene TP53 (also known as protein 53 or tumor protein 53), encoding transcription factor P53, is mutated or deleted in half of human cancers, demonstrating the crucial role of P53 in tumor suppression. There are reports of nearly 250 independent germ line TP53 mutations in over 100 publications. The P53 protein has the structure of a transcription factor and, is made up of several domains. T...

متن کامل

Roles of Renin-Angiotensin System in the Regulation of Prostate Cancer Bone Metastasis: A Critical Review

Mestastatic prostate cancer cells (MPCCs) frequently metastasize to bone, which is a “favorite soil” for colonization and proliferation of MPCCs. Prostate cancer bone mestastasis is tightly associated with tumor-induced bone lesions, most commonly caused from the etiological imbalance between osteoblastic bone formation and osteoclastic bone resorption, and from the anti-tumor immune response. ...

متن کامل

Synergistic Effects of NDRG2 Overexpression and Radiotherapy on Cell Death of Human Prostate LNCaP Cells

Background: Radiation therapy is among the most conventional cancer therapeutic modalities with effective local tumor control. However, due to the development of radio-resistance, tumor recurrence and metastasis often occur following radiation therapy. In recent years, combination of radiotherapy and gene therapy has been suggested to overcome this problem. The aim of the current study was to e...

متن کامل

CASE REPORگزارش یک مورد تومورمتاستاتیک ایریس ثانوی به کانسر پروستات

A case of iris metastasis secondary to prostate cancer is reported and the clinical features of the patient are described. A 75 years old man referred with a right iris tumor , secondary glaucoma and severe anterior uveitis. He had history of multiple bone metastases due to prostate cancer. The iris tumor was diagnosed as prostate cancer metastasis and the literature was searched using medline ...

متن کامل

Absence of myeloid Klf4 reduces prostate cancer growth with pro-atherosclerotic activation of tumor myeloid cells and infiltration of CD8 T cells

The microenvironment of prostate cancer often includes abundant tumor-associated macrophages (TAMs), with their acquisition of an M2 phenotype correlating with local aggressiveness and metastasis. Tumor-derived M-CSF contributes to TAM M2 polarization, and M-CSF receptor inhibition slows prostate cancer growth in model systems. As additional cytokines can direct TAM M2 polarization, targeting d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 18  شماره 

صفحات  -

تاریخ انتشار 2017